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The mathematical theory of compressed sensing (CS) asserts that
one can acquire signals from measurements whose rate is much
lower than the total bandwidth. Whereas the CS theory is now
well developed, challenges concerning hardware implementations
of CS-based acquisition devices—especially in optics—have only
started being addressed. This paper presents an implementation
of compressive sensing in fluorescence microscopy and its applica-
tions to biomedical imaging. Our CS microscope combines a
dynamic structured wide-field illumination and a fast and sensitive
single-point fluorescence detection to enable reconstructions of
images of fluorescent beads, cells, and tissues with undersampling
ratios (between the number of pixels and number of measure-
ments) up to 32. We further demonstrate a hyperspectral mode
and record images with 128 spectral channels and undersampling
ratios up to 64, illustrating the potential benefits of CS acquisition
for higher-dimensional signals, which typically exhibits extreme
redundancy. Altogether, our results emphasize the interest of CS
schemes for acquisition at a significantly reduced rate and point to
some remaining challenges for CS fluorescence microscopy.

biological imaging ∣ compressed sensing ∣ computational imaging ∣
sparse signals

Fluorescence microscopy is a fundamental tool in basic and
applied biomedical research. Because of its optical sensitivity

and molecular specificity, fluorescence imaging is employed in
an increasing number of applications which, in turn, are continu-
ously driving the development of advanced microscopy systems
that provide imaging data with ever higher spatio-temporal resolu-
tion and multiplexing capabilities. In fluorescence microscopy, one
can schematically distinguish two kinds of imaging approaches, dif-
fering by their excitation and detection modalities (1). In wide-field
(WF) microscopy, a large sample area is illuminated and the
emitted light is recorded on a multidetector array, such as a CCD
camera. In contrast, in raster scan (RS) microscopy, a point excita-
tion is scanned through the sample and a point detector is used to
detect the fluorescence signal at each position.

While very distinct in their implementation and applications,
these imaging modalities have in common that the acquisition is
independent of the information content of the image. Rather, the
number of measurements, either serial in RS or parallel in WF, is
imposed by the Nyquist-Shannon theorem. This theorem states
that the sampling frequency (namely the inverse of the image
pixel size) must be twice the bandwidth of the signal, which is
determined by the diffraction limit of the microscope lens equal
to λ∕2NA (λ is the optical wavelength and NA the objective nu-
merical aperture). Yet, most images, including those of biological
interest, can be described by a number of parameters much lower
than the total number of pixels. In everyday’s world, a striking
consequence of this compressibility is the ability of consumer
cameras with several megapixel detectors to routinely reduce the
number of bits in a raw data file by an order of magnitude or two

without substantial information loss. To quote from David Brady:
“if it is possible to compress measured data, one might argue that
too many measurements were taken” (2).

The recent mathematical theory of compressed or compressive
sensing (CS–see refs. 3, 4) has addressed this challenge and
shown how the sensing modality could be modified to reduce the
sampling rate of objects which are sparse in the sense that their
information content is lower than the total bandwidth or the
number of pixels suggest. The fact that one can sample such sig-
nals nonadaptively and without much information loss—if any
at all—at a rate close to the image information content (instead
of the total bandwidth) has important consequences, especially in
applications where sensing modalities are slow or costly. To be
sure, the applications of CS theory to data acquisition are rapidly
growing in fields as diverse as medical resonance imaging (5, 6),
analog-to-digital conversion (7), or astronomy (8).

In optics, the interest in CS has been originally spurred by the
demonstration of the so-called “single-pixel camera” (9). Since
then, reports have explored the potential of CS for visible and
infrared imaging (10, 11), holography (12), or ghost imaging
(13). In microscopy, the feasibility of CS measurements has
recently been demonstrated (14). Altogether, these results open
exciting prospects, notably for the important case of biomedical
imaging. Yet, there are very few results about the performance
of CS hardware devices on relevant biological samples. As such
samples often have low fluorescence, it is especially important to
understand how the associated noise will affect the acquisition
and reconstruction schemes.

In this paper, we describe Compressive Fluorescence Micro-
scopy (CFM), a unique modality for fluorescence biological and
hyperspectral imaging based on the concepts of CS theory. In
CFM, the sample is excited with a patterned illumination and its
fluorescence is collected on a point detector. Images are compu-
tationally reconstructed from measurements corresponding to
a set of appropriately chosen patterns. Therefore, CFM benefits
from many advantages associated with RS techniques, namely,
high dynamic range, facilitated multiplexing, and wide spectral
range (from the UV to the IR). In truth, the benefits of CS are
particularly appealing in biology where fast, high-resolution, and
multicolor imaging is highly sought after.

The paper is organized as follows. We begin by recalling the
principles of CS theory for optical imaging. We then turn to
the description of the practical implementation of CFM and of
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the sensing protocol. Our techniques are subsequently applied
to image several relevant samples, including fluorescent beads,
cultured cells and tissues. By extending our implementation, we
further demonstrate the possibility of hyperspectral acquisition
with up to 128 different spectral channels. A final contribution is
a careful study of various noise trade-offs for CFM. We conclude
the paper with a discussion of prospective CFM developments.

Compressed Sensing Framework
We wish to image a two-dimensional sample x ¼ fx½i�g, a distri-
bution of fluorescent probes, in which x½i� is the value of x at
the pixel/location i (thus one can view pixel intensities x½i� as
the coefficients of the image x in a basis of localized functions,
namely, the Dirac basis). We represent this object in a basis W of
our choosing and write

x ¼ ∑
p

c½p�wp ¼ Wc;

where the wp’s are (orthogonal) basis functions and the c½p�’s are
the coefficients of x in the expansion. We say that the signal is
K-sparse if at most K of these coefficients are nonzero. An em-
pirical fact is that most images of interest are well approximated
by K-sparse expansions with K much less than the number of pix-
els N, and this is the reason why data compression is effective;
one can store and transmit quantizations of the large coefficients,
ignore the small ones, and suffer little distortion.

In our imaging setup, we measure correlations between the im-
age of interest x and sensing waveforms ϕk taken from another
basis Φ; that is, we measure

yk ¼ hx; ϕki ¼ ∑
i

x½i�ϕk½i�: [1]

Here, ϕk is an illumination or intensity pattern so that yk is ob-
tained by collecting all the fluorescence corresponding to those
pixels that have been illuminated on a single-point detector.
Wide-field and point-like excitation are two extreme cases, cor-
responding respectively to a uniform sensing waveform (ϕk½i� ¼ 1
for all i) and to a spike or Dirac waveform.

In its simplest form, CS theory asserts that if the signal x is
sparse in the representation W, then only few measurements
of the form [1] are sufficient for perfect recovery provided the
sensing and representation waveforms, respectively ϕk and wp,
are incoherent (4, 15). Two systems are said to be incoherent if
any element in one of the two cannot be expressed as a sparse
linear combination of elements taken from the other. Formally,
the coherence between two orthobases W and Φ of RN is mea-
sured by the parameter μðW;ΦÞ ranging between 1 and N:

μðW;ΦÞ ¼ Nmax
p;k

jhwp; ϕkij2: [2]

The Fourier and Dirac bases are in this sense maximally inco-
herent (we need many spikes to synthesize a sinusoid and vice
versa) and μ ¼ 1. On the opposite, two identical bases are maxi-
mally coherent and, in this case, μ ¼ N. Hence, incoherence ex-
presses the idea of the level of dissimilarity between any two
representations of a signal. With this notion in mind, one per-
ceives how each incoherent measurement—a projection on an
element of the basis Φ—conveys a little bit of information about
all the entries of the coefficient vector c. An important result in
CS theory states that K-sparse signals can be recovered exactly
from comparably few measurements in an incoherent system.
Further, recovery is achieved by solving a tractable optimization
program—a linear program. One solves

min
c∈RN

‖c‖ℓ1
subject to yk ¼ hϕk;Wci; for all k ¼ 1…M: [3]

When M measurements are chosen uniformly at random from
the basis Φ, the recovery is exact with very high probability; that
is, the solution sequence ĉ obeys x̂ ¼ ∑p ĉ½p�wp ¼ x, provided
that

M ≥ CμðΦ;WÞK logN; [4]

where C is a constant on the order of unity. This result empha-
sizes both the role of the coherence and the potential gain for
large images due to the logarithmic dependence in the pixel size.
For incoherent pairs, we only need on the order of K logN ran-
dom samples.

We have discussed sparse signals above for ease of exposition.
However, the theory extends to approximately sparse signals and
to noisy data. For instance, if the signal is well approximated by a
K-sparse signal (some would say that it is compressible), then the
reconstruction error is shown to be small. Further, the recovery is
not sensitive to noise in the sense that the error degrades grace-
fully as the signal-to-noise ratio decreases. We refer to ref. 16 and
references therein for quantitative statements.

Compressive Fluorescence Microscopy: Implementation
Experimental Setup. Our setup is based on a standard epifluores-
cence inverted microscope (Nikon Ti-E) as shown in Fig. 1A. To
generate spatially modulated excitation patterns, we incorpo-
rated a Digital Micromirror Device (DMD) in a conjugate image
plane of the excitation path. The DMD is a 1,024-by-768 array of
micromirrors (Texas-Instrument Discovery 4100) of size 13.68 ×
13.68 μm each, and which can be shifted between two positions
oriented at þ12° or −12° with respect to the DMD surface. The

Fig. 1. (A) Experimental setup. The dotted and plain segments correspond to
planes respectively conjugated to the pupil and sample planes. (B) Slice of lily
anther (endogenous fluorescence with epifluorescence microscopy image re-
corded on a CCD camera). (C) Projection of a Hadamard pattern on a uniform
fluorescent sample. (D) Projection of the same Hadamard pattern on the bio-
logical sample. (E) Fluorescence intensity during an acquisition sequence.
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micromirrors are all independently configurable at frequency up
to 20 kHz. The DMD is carefully positioned so that the optical
axis [defined by the microscope lens and the dichroic mirror DM
(Fig. 1A)] is orthogonal to the plane of the DMD.

As light source, we used a laser bench (Roper Scientific)
equipped with two superimposed continuous-wave laser (λ ¼
488 nm, Coherent and λ ¼ 561 nm, Cobolt). The laser beam first
passed through a rotating diffuser or a phase scrambler (Dyopti-
ka) in order to reduce the spatial coherence and was then coupled
to a 200 μm multimode fiber. At the fiber output, the laser beam
was expanded into a 2 cm diameter collimated beam. This beam
was oriented toward the DMD at an angle of incidence corre-
sponding to twice the tilting angle of the DMD mirrors (approx.
24°); a micromirror oriented at þ12° would reflect the light into
the microscope and appear as a bright pixel in the sample plane
and, inversely, micromirrors oriented at −12° appear as dark pix-
els. Depending on the samples, we used an air (Nikon, 20X, Plan
Apo VC NA 0.75) or an oil-immersion objective (Nikon, 60X
Plan Apo Tirf, NA 1.45). When the 20X air lens was used, the
imaging lenses (lenses f 1, f 2, f 3 in Fig. 1A) were chosen to intro-
duce a 1.5X reduction. The overall magnification of the image of
the DMD on the sample was 1∕30 and the size of a single micro-
mirror equal to 456 nm. When the 60X lens was used, a different
set of imaging lenses was chosen which only served as a 1x relay;
here, the image size of a single micromirror in the sample plane
was equal to 228 nm. Upon illumination with an intensity pattern
(excitation intensity approximately 20 to 60 W∕cm2), the sample
fluorescence was detected on a photomultiplier tube PMT
(Hamamatsu) and sampled using an analog-digital converter
board (PCI-4462, National Instruments) (Fig. 1 B–D). Depending
on the brightness of the sample, the pattern projection frequency
was 1 or 10 kHz, while the sampling frequency of the PMTsignal
was 96 kHz. This oversampling of the PMT signal allowed us to
remove the portion of the signal corresponding to the transition
of the micromirrors between two patterns. In CS measurements,
the information on the sample is thus contained in the variations
of the intensity signal as a function of the illumination pattern
(Fig. 1E). The WF image of the sample could also be directly
formed on a camera (ImagEM) placed on the output port of the
microscope. For hyperspectral imaging, the PMTwas replaced by
a fast and sensitive spectral detector described later in the paper.
Note that the role of the DMD in our set-up differs from that in
the “single-pixel camera” (9) or in some other microscopy setups
(14). In the latter, the modulator is placed between the sample
and the detector, meaning that it is used to select some of the
light within the total signal, rather than to control the excitation
pattern. Our choice is motivated by the low level of fluorescence
encountered in biological samples such as living cells labeled with
fluorescent proteins. Indeed, the overall efficiency of a DMD is
68% and falls down to 34% when only one half of the mirrors
are tilted. In our case, the photon collection efficiency is only lim-
ited by the numerical aperture of the microscope lens and the
quantum yield of the detector as in conventional epifluorescence
microscopy.

Choice of the Illumination Patterns. For the practical implementa-
tion of a CS-based image acquisition system, it is essential to de-
termine which incoherent basis should be used when no prior
information on the signal is available. There are measurement
ensembles, such as the partial Fourier or Hadamard systems,
known to be highly incoherent with the bases in which most nat-
ural images are sparse. When excitation patterns are generated by
micromirrors, ϕk½i� is a binary waveform taking on the two values
0 or 1. An appealing choice for Φ is then the Hadamard system
known to be incoherent with the Dirac basis and fine scale wave-
lets. Since each entry of a Hadamard pattern hk is either −1 or
þ1, one defines ϕk as a shifted and rescaled version of hk via
ϕk ¼ ðhk þ 1Þ∕2, which can be simply encoded on the DMD.

We used patterns of size 256 × 256 and 128 × 128 obtained by
binning 2 × 2 and 4 × 4 groups of micromirrors. The actual pat-
tern ~hk formed in the sample plane is in fact the convolution
of the ideal pattern hk with the point spread function of the mi-
croscope Pexc in the excitation path. Fig. 1 C and D represent
WF images of a Hadamard pattern projected on a uniform and
on a biological sample. A specificity of optical imaging is that the
sensing elements ϕk represent light intensities and are thus non-
negative which, as discussed later, has important practical impli-
cations.

Hadamard waveforms have a sort of spatial frequency (like
sinusoids) which grossly depends on the typical block size of the
patterns. As the power spectrum of most biological images is
generally concentrated at low frequencies, the flexibility in fre-
quency selection is important. We introduce two distinct pattern
selection strategies based on the expected spatial content of the
sample:

• When the sample we wish to acquire is sparse in the pixel
domain as in the case of single molecule or bead imaging,
no typical frequency range needs to be favored and Hadamard
patterns are selected uniformly at random.

• More complex samples have a power spectrum typically decay-
ing like a power law. This a priori information suggests that
we should balance low—and high-frequency measurements in
order to accurately acquire the low-frequency part of the im-
age, which accounts for a significant part of the total variance.
The half-half strategy then projects the m∕2 patterns with the
lowest spatial frequencies to acquire a low-resolution image of
the sample; the high-resolution content of the image is ran-
domly sampled by choosing m∕2 measurements among the
N −m∕2 remaining high-frequency Hadamard patterns. Such
an adaptive strategy guarantees an accurate determination of
the low-frequency content while allowing for the estimation of
details at a finer scale.

It should be noted that Hadamard matrices are not the only
possible choice. For instance, some recent work in compressed
sensing theory has focused on special cases of structured matrices
inspired by low-density parity check codes (32) or statistical
physics (33). While preliminary results seem very promising in
terms of sensing/reconstruction performance, it is not yet clear
how it can be efficiently adapted to acquire biologically relevant
samples.

Computational Reconstruction. In CS, it is essential to enforce the
sparsity of the reconstructed signal in some representationW that
is chosen a priori. The choice of W highly depends on the spatial
structures of the signal to be reconstructed. One would typically
use a Fourier representation for oscillatory features, wavelets for
pointwise singularities, curvelets for contour-like or filamentary
structures (17), and so on. One could also use a concatenation
of all these representations. (If one intends on using the Fourier
basis as a sparsity basis, one would need to scramble the columns
of the Hadamard basis because it would otherwise be coherent
with sinusoids.)

After recording the fluorescence intensity during a sequence of
up to 65,536 consecutive patterns (Fig. 1C), one can imagine re-
covering the signal x from these data by solving the optimization
problem [3]. Because our measurements are noisy, it is actually
better to relax the constraints into

min
x∈RN

‖WTx‖ℓ1
subject to ‖y −Φx‖ℓ2

≤ ϵ; [5]

we ask that the fit holds up to the noise level. In the following, W
will be either an orthonormal basis (e.g., Dirac basis) or an over-
complete signal representation (e.g., undecimated wavelet frame
or curvelet frame). The corresponding choice will be clearly spe-
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cified for each individual reconstruction result. For computa-
tional reasons, we find it convenient to solve a relaxed version
of this problem, namely,

min
x∈RN

‖WTx‖ℓ1
þ α

2
‖y −Φx‖2

ℓ2
: [6]

As is well known, there is a value αðϵÞ such that the two programs
coincide. For our experiments, we used the NESTA solver (31)
and the regularization parameter α is chosen empirically depend-
ing on the noise level. When the signal is nearly sparse and the
noise level low, it is known that this program finds a reconstruc-
tion with a low mean squared error (MSE).

Sparse Fluorescence Images: Beads, Cells and Tissues
Fluorescent Beads.We first tested our CS microscope (with the 20x
objective) on a sample of fluorescent beads (diameter 2 μm, peak
emission at 520 nm, Fluorospheres Invitrogen) deposited on a
glass coverslip. At a low density of beads, the WF image is the
superposition of a few fluorescence spots on a dark background,
a signal similar to that of single molecule imaging data in biology
(18). As for the sparsity basis W , we obtained nearly equivalent
results using the Dirac basis or a wavelet transform. Here we
show images reconstructed with the wavelet transform and using
a number of random 256 × 256 Hadamard patterns decreasing
from 16,384 down to 512. (To be complete, we used a weighted
ℓ1 norm in [6] where the weight of each coefficient is inversely
proportional to scale.) In the following, the undersampling ratio
is the ratio between the numberN of pixels and the numberM of
measurements. As shown in Fig. 2, most of the bead positions are
recovered with undersampling ratios up to 64, corresponding to
M ∼ 1.5% of N. At higher undersampling ratios, beads with low
intensities are lost.

To quantify the distorsion of the reconstructed image as a
function of the undersampling ratio, we calculated the Peak
Signal-to-Noise Ratio, PNSR ¼ 10 logðd2∕MSEÞ where MSE ¼
N−1‖x̂ − xref‖2

2 , the squared distance between the reconstructed
image from all the 256 × 256 possible measurements and that
which only uses a fraction. Above, d is the dynamical range of the

reconstruction obtained from a full sample. As shown in Fig. 2A,
the PSNR decreases with the undersampling ratio (blue curve)
and seems to reach a plateau at ratios above 64 where most of
the beads are lost. Because our CS microscope is based on an
active patterned illumination and the fluorescent signal emitted
by the sample varies linearly (at least for moderate illumination
powers) with the excitation intensity, we can adjust the SNR of
our CS measurements in a very straightforward manner by con-
trolling the excitation laser power. This situation is different
from other CS-based imaging techniques such as the single pixel
camera. In particular, the ability to vary the excitation intensity
allows us to test the effect of the SNRof the measurements on the
image reconstruction. We thus acquired a second set of measure-
ments with an excitation light intensity divided by 100 to assess
the effect of illumination on compression efficiency.

The red curve in Fig. 2A represents the PSNR of the recon-
structed images as a function of the undersampling ratio. As
expected, the PSNR is lower than that for the nominal illumination
and reaches a plateau at an undersampling ratio of about 10, where
almost all the beads are lost, clearly showing that the distortion
of the reconstructed image is strongly affected by the amount
of detected fluorescent photons. Indeed at such low intensities,
photon noise (also termed, shot noise) may be significant.

To further explore the impact of photon noise on the compres-
sion efficiency, we performed numerical simulations on an arti-
ficial image of fluorescent beads made of 50 Gaussian spots
(FWHM 3 pixels) randomly positioned in the field of view of size
256 × 256 pixels. The simulated nominal illumination intensity I0
was set so that the resulting flux (i.e., the sum of the signals over
all the pixels) was equal to f 0 ¼ 6.4e3. Each measurement yk was
then computed as one realization of a Poisson process with
mean hϕk; xi.

Reconstructions are processed with intensities I0, I0∕10 and
I0∕100 for a range of undersampling ratios between 2 and 64.
As shown by the PSNR curves (Fig. 2B), these simulations
qualitatively reproduce the loss of compression efficiency for low-
light levels but fail to quantitatively estimate the PSNR of the
reconstructed images. This result suggests that photon noise is
not the only source of image degradation in our imaging system.

Fig. 2. Top left to bottom right: camera snapshot and reconstructed 256-by-256 bead images for values of the undersampling ratio equal to 8, 16, 32, 64, and
128. (A) Plot of the PSNR (see text) for a nominal illumination level (blue curve) and for the same level reduced by a factor 10 (red curve) and a factor of 100
(green curve) (simulated data). The solid lines correspond to the PSNR in raster scan for the same surfacic illumination. (B) Same as (A) for the experimental data.
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A possible additional cause is the discrepancies between the
theoretical patterns and the effective illumination profiles in the
sample plane.

Lily Anther Slice. In order to investigate the potential of CFM for
biological samples, we imaged slices of endogeneously fluores-
cent lily anther (Carolina Biological Supply). A conventional
epifluorescence image of a slice (Excitation 488 nm/Emission
520 nm) recorded on a CCD camera can be seen in Fig. 3 (upper
left). The resolution of this image has been sampled down to
128 × 128 pixels. We recorded the same image with the CFM set-
up by illuminating the sample with 16; 384 ¼ 1282 different Ha-
damard patterns (complete basis). For this experiment, we used a
20x lens with a 0.75 NA. Further, we used curvelets as sparsity
basis W because they are known to sparsely encode contour-like
structures together with the half-half strategy described earlier
to account for both low-spatial frequencies shapes and higher
frequencies details of the sample structure. (We again used a
weighted ℓ1 norm with weights inversely proportional to scale.)
Reconstructed images with varying undersampling ratios from 1
to 8 are displayed in Fig. 3 (top). Here, the method reconstructs
images satisfyingly up to an undersampling ratio of about 8.
Compared to fluorescent beads, this lower figure can be primarily
attributed to the lesser sparsity.

Another important issue is that this sample is not fully two-
dimensional. Due to the thickness of the slice (about 50 μm in
this case, compared to the focal depth approximately 1 μm), the
contrast of Hadamard patterns diminishes away from the focal
plane. As a result, there is a nonmodulated background signal
and, as further discussed below, the photon noise associated to
this signal affects the image reconstruction by “hiding” the useful
information contained in the intensity fluctuations due to the var-
iations in the illumination patterns (Fig. 1E).

Zyxin-mEOS2 COS7 Cells. In many biological applications, it is es-
sential to use high magnification and high NA optics and we thus
aimed at testing CFM in these imaging conditions (oil-immersion
objective 60x, NA 1,45). To overcome the limitations due to the
short focal depth of a high NA objective, we used photoactivation
techniques. COS7 cells were transfected with Zyxin-mEOS2 (20).
Zyxin is a protein mainly expressed in the cellular focal adhe-
sions, at the surface on which the cells are plated. The protein
was fused to mEOS2, a genetically-encoded photoconvertible

fluorescent protein tag (19) widely used in superresolution micro-
scopy, that has green fluorescence in its native state (Excitation
506 nm/Emission 519 nm) and can be converted to a red-emitting
state (Excitation 573 nm/Emission 584 nm) upon illumination
with violet light. The COS7 cells were plated at density of
100; 000 cell∕mL on 18 mm coverslips on a 12 well plate. The
cells were transfected with Eos-Zyxin using chemical transfection
(Fugene) 4–5 h after plating and experiments were performed on
live cells 18–30 h after the transfection. By using an evanescent
wave excitation with a laser at 405 nm, we could convert proteins
situated at the vicinity (approximately 100 nm) of the glass cover-
slip. Therefore, in our sample, the green emitting fluorophores
are located within the 3D cellular volume while red-emitting pro-
teins constitute a 2D sample. The superimposed epifluorescence
images in the green and red channels (256 × 256 pixels) are
shown in Fig. 3 (bottom, left). The same 2D ensemble of photo-
converted proteins was subsequently imaged with the CFM setup
with 32,768 different 256 × 256 pixels Hadamard patterns (half
of the full basis). For this set of data, the pixel size in the sample
plane of each Hadamard pattern is 430 nm, about twice the dif-
fraction limit. As for the bead images, we used a wavelet trans-
form as sparsity basis W.

The reconstructed images for undersampling ratios varying
between 2 and 15 are displayed in the second row of Fig. 3.
For direct comparison with the conventional epifluorescence WF
image, a dual color image obtained by superposition of the red
converted Zyxin-mEOS2 image and the green native Zyxin-
mEOS2 image is shown in Fig. 3. It is noteworthy that even if
the fluorescence emission of transfected COS7 cells is low com-
pared to the lily anther slice (by about a factor of 10), the quality
of the reconstructed CS images is good for undersampling ratios
up to 8 and starts to be degraded at a ratio of about 15. The
very low background of our 2D sample clearly enables a better
reconstruction. Because fluorescent proteins are very sensitive
to photobleaching, one has to use low illumination to minimize
this effect during acquisition. Thus, photon noise effects, which
manifested themselves only at reduced illumination intensities in
the bead images, appear to be a limiting factor for CS imaging of
less fluorescent and/or photo-damageable samples. The impact of
photon noise on CFM is discussed in more details in a later
section.

Fig. 3. Upper line: CS imaging of a slice of a lily anther. Left: Original image (128 × 128 pixels) by conventional epifluorescence microscopy. Left to right: the
same sample imaged by CFM with undersampling ratios between 1 and 8. Lower line: CS imaging of COS7 cells expressing Zyxin-mEOS2. Left: superposition of
the conventional epifluorescence images of the native (green) and converted form (red) of the markers. Left to right: CFM images of the converted form of the
markers at undersampling ratios equal to 2, 4, 8, and 15.
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Hyperspectral Imaging in CFM
Hyperspectral imaging is defined as the combined acquisition of
spatial and spectral information. In biological imaging, a growing
range of applications such as the study of protein localization and
interactions require quantitative approaches that analyze several
distinct fluorescent molecules at the same time in the same sam-
ple (22). These applications are in fact becoming ever more com-
mon with the availability of an increasing panel of fluorescent
dyes and proteins with emission ranging from the UV to the far
red (23).

Multicolor data are usually acquired by selecting a few distinct
spectral bands. However, in many cases, the incomplete separa-
tion of the different color channels due to the presence of auto-
fluorescence, along with cross-excitation and emission “bleed-
through” of one color channel into the others render the inter-
pretation of multiband images difficult and/or ambiguous. To
overcome these limitations, it would often be preferable to record
the full spectral information at each pixel of the image.

In this context, two elements make the potential benefits of
CS particularly appealing for hyperspectral measurements. First,
a full data acquisition can take up a very long time because the
number of voxels N quickly gets very large. Second, the signal
becomes comparably sparser as the dimension increases. To de-
monstrate the possibility of CFM for hyperspectral fluorescent
imaging, we modified the setup and replaced the point detector
by a spectrometer coupled to an EMCCD camera (Evolve 512,
Photometrics USA). The entire spectrum between 520 nm and
640 nm is recorded on 128 × 1 pixels. We spin-coated on a glass
coverslip a mixture of three types of fluorescent beads (TransFluo
Beads, Invitrogen) with different emission spectra in our detec-
tion band (see Fig. 4A for a gray WF image of the sample). A
complete set of 256 × 256 Hadamard patterns was subsequently
projected on the sample and, for each projected pattern, we re-
corded the fluorescence spectrum.

The computational reconstruction of hyperspectral data can be
performed in two different manners. The simplest one is a direct
extension of the monochromatic case and consists in reconstruct-
ing each spectral band independently from the others. This
approach, however, does not fully account for the particular
structure of the hyperspectral data. Rather, it is worthwhile to
exploit sparsity in both the spatial and spectral domains. Hence,
we propose a computational reconstruction by solving the same
problem as in [6] with the following modification: x is now the full
2D–λ data cube and Φ and W are waveforms ϕk½i; λ� of both
space and wavelength. In these experiments, W was obtained
by tensorizing the Dirac basis in space—well adapted to point-
wise structures like beads—with a wavelet basis along the spectral
dimension which is well suited for smooth variations and occa-
sional transients. A slice of the 2D–λ sensing matrix at a fixed
λ is the same 2D partial Hadamard transform.

We obtained full color images by pooling the data cube—see
Fig. 4—into three spectral bands: blue (500–530 nm), green (530–
560 nm) and red (560–630 nm). Such multicolor images are
shown for varying values of the undersampling ratio in Fig. 4. We
observe that almost no degradation is seen for undersampling
factors up to 16. Furthermore, hyperspectral reconstructions pro-
vide the spectrum of each individual bead from the reconstructed
2D–λ cube (the normalized spectra of three different beads are
shown in Fig. 4F). The spectra are correctly reconstructed for un-
dersampling factors up to 64. Interestingly, when reducing the
number of measurements, the distortion primarily affects the low
intensity parts of the spectra, similar to the effect of increasing
undersampling on the dimmer beads in monochromatic images.

Discussion and Perspectives
We have developed an imaging approach based on the concepts
of CS theory which, on samples relevant for biological imaging,
allows the reconstruction of fluorescence images with undersam-

pling ratios up to 64. While our results constitute a significant
gain over undersampling ratios achieved in prior CS-based ima-
ging approaches, several factors (computational, instrumental,
or noise-related) still contribute to limit the current performances
of CFM. Below, we discuss these factors as well as the prospects
for future developments and applications.

Point Spread Function and Its Modeling. In the current implementa-
tion of CFM, we neglected the role of the point spread function
(PSF) of the excitation pathway (corresponding to the lenses
f 1; f 2 and f 3 and the objective) and used the idealized matrix
with zeros and ones (depending whether a pixel is illuminated or
not) for the inversion. In reality, the PSF acts as a low pass filter,
meaning that those patterns illuminating the sample are spatially
smoother than their theoretical counterparts. In the framework
of CS, it is well known that recovering a compressed signal from a
sensing matrix that departs from the real one may, in general,
dramatically degrade the reconstruction quality. In our case, how-
ever, this approximation only has minor consequences for essen-
tially two reasons. In our experiments, the individual pixel size of
the Hadamard patterns was at least twice as large as the diffrac-
tion-limit of the microscope. In other words, the PSF only has
a minor filtering impact on the patterns. Second, neglecting the
effect of the PSF in the reconstruction does not dramatically re-
duce the quality of reconstruction. To further emphasize this fact,

Fig. 4. (A–E) Camera snapshot and reconstructed 256-by-256 bead images
for undersampling ratios equal to 1, 8, 16, and 32. (F) Normalized spectra
(128 spectral lines) of three individual different beads circled in (B) for under-
sampling ratios equal to 1 (plain circles), 32 (squares), and 64 (triangles). The
gray area in the spectrum represents a rejection band of the dichroic mirror
used in our setup.
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let f be the PSF of the lens so that the collected fluorescence is of
the form yk ¼ hϕk � f ; xi (we measure the dot product between
the object of interest and the theoretical patterns convolved with
the PSF). If the PSF is symmetric around the origin, we have

y ¼ ΦFx

in which F is the linear convolution with the PSF. Hence, neglect-
ing the PSF recovers a signal ~x obeying y ¼ Φ~x; in other words,
one gets ~x ¼ Fx which is x at the resolution of the microscope.
Indeed, assuming that the lenses the excitation and emission
PSFs are identical, the CSM has the same resolution as its wide-
field equivalent. Now if one wishes to account for the PSF, one
would need to solve a joint decompression–deconvolution pro-
blem. If the deconvolution should provide a higher resolution
image, it is well known that it is usually at the cost of noise am-
plification. Here again, the sparsity prior used for decompression
should of course help regularizing this deconvolution step.

Noise and MSE. It is crucial to examine noise figures in our setup.
There are two important facts affecting the quality of reconstruc-
tion: the noise distribution associated with CS-type data and the
undersampling ratio.

We assume below that photonic noise is the limiting source of
noise, an assumption which sets CS-based optical systems apart
from the common theoretical CS framework (9, 24, 25). To
understand the important trade-offs, we compare the respective
situations of RS and CS, two point detection imaging techniques.
Below, we put IRS and ICS for the excitation intensity per unit
area and per unit time during RS and CS acquisition. Likewise,
TRS and TCS are durations of excitation (for a single measure-
ment). Finally, we set λRS ¼ IRS × TRS and similarly for λCS.
In practice, all these parameter values are adjusted according
to factors that one wants to optimize (acquisition speed, sensitiv-
ity, photobleaching, and so on) and they must be evaluated on a
case by case basis. Hence, rather than an exhaustive comparison
of the relative merits of RS and CS acquisition, the discussion
below aims at providing a general framework to understand
the nature of the noise in CS measurements.

In the case of RS, the ith pixel measurement is distributed as a
Poisson random variable with mean and variance λRS × x½i�.
Using the scaled observed data yields a per-pixel MSE equal
to

MSEðRSÞ ¼ N −1
∑
i

Eðx̂½i� − x½i�Þ2 ¼ λ−1
RS × x̄;

where x̄ ¼ N−1∑ix½i�. For CS, suppose first that we collect all
Hadamard measurements (no undersampling). Each measure-
ment is an independent Poisson variable with mean λCS × hϕk; xi.
With patterns of the form 1

2
ð1þ hkÞ where hk is a Hadamard se-

quence, one can decompose the mean value of yk, as

λCS × hϕk; xi ¼
λCS
2

½Nx̄þ hhk; xi�:

Hence, this is the sum of a DC offset and a Fourier-like compo-
nent. The presence of the DC offset (which prevents the optical
patterns from being negative) impacts the data SNR. Indeed,
a possible source of concern is that for many high-frequency
components, Nx̄ may be much greater than the magnitude of
hhk; xi—the DC component dominates the high-frequency coef-
ficients. Therefore, when measuring a high-frequency compo-
nent, we need to deal with a large amount of noise coming from
the average fluorescence of the sample under study. This situa-
tion is arguably very different than in other applications—for in-
stance, the acquisition of radio-frequency signals—where one can
use sensing waveforms that take on negative values by switching

the phase of the object we wish to acquire (21). Inverting the Ha-
damard matrix gives a noisy image x̂½i� obeying

Ex̂½i� ¼ x½i� and Varðx̂½i�Þ ¼ 2

λCS
x̄

(see Appendix for details). In contrast to RS microscopy, we see
that CFM yields a spatially invariant noise level in the pixel do-
main. In other words, by measuring the image projection on an
incoherent basis, the noise gets spread equally over all the pixels.
Hence, before applying any processing, the CS situation is more
favorable for recovering brighter areas but less so for dimmer
regions. Summing up gives

MSEðCSÞ ¼ 2λCS
−1 × x̄:

This analysis also shows that it is essential to minimize the sources
of signal which could contribute to a constant background and
increase x̄. This offset could be due to the nature of the sample
itself but can also originate from stray light or out-of-focus fluor-
escence. These considerations explain, at least qualitatively, why
the beads sample, where the background x̄ is low compared to the
bright spots and is purely bidimensional, is favorable for CFM.

To consider the effect of statistical estimation procedures or
data processing, consider the beads sample again in which spar-
sely distributed beads are located in the field of view. Each bead is
an isolated bright spot surrounded by wide nonfluorescent areas.
Suppose then that we were to apply a thresholding estimator,
setting to zero all intensities below a certain level, and keeping
those above threshold. Then one would obtain a very low MSE
in the CS setting because dark pixels would be correctly set to
zero while bright pixels would have a variance that is orders of
magnitude lower than that achievable in the RS case. In short,
thresholding would effectively filter out the off-support noise and
the situation would be extremely favorable to the CS approach.
Quantitatively, if there are K bright pixels, the error after estima-
tion for RS and CS would behave like

MSEðRSÞ ¼ λRS
−1 × x̄; MSEðCSÞ ¼ 2λCS

−1 ×
K
N

× x̄: [7]

Note the potentially enormous reduction in MSE by the factor
K∕N. Conversely, RS would be more effective for smooth and
bright images (sparse images in the frequency domain).

The comparisons between RS and CS microscopy above are
valid as long as the same illumination intensity per pixel is as-
sumed and the number of measurements M is equal to the num-
ber of pixels. We now discuss the effect of undersampling. Now
the CS recovery is both an inversion and a denoising algorithm
and the recovery error depends on the compressibility of the
signal (on how sparse it is). For instance, in the fully sampled case
where sparsity is assumed in the spatial domain, the CS recovery
would essentially invert the Hadamard matrix and then apply
soft-thresholding to the output. Now suppose for simplicity that
the signal is K-sparse and that the numberM of measurements is
sufficient for perfect recovery from noiseless data. Then the
squared recovery error from M noisy measurements as above
would roughly scale like

MSEðCSÞ ¼ C0 × λCS
−1 ×

K
M

× x̄; [8]

where C0 is a small numerical constant (typically on the order of
unity). Hence, the main difference with the MSE available from a
full sample is a loss of a factorN∕M—the undersampling ratio—
in the MSE, compare [7]. In other words, halving the number
of samples—everything else, namely, intensity and duration of
excitation remaining the same—doubles the MSE. The same
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conclusion applies for approximately sparse signals for which the
variance component of the MSE dominates the squared bias.
Here again, the more compressible the signal (the smaller K),
the better the performance (e.g., the beads sample is favorable
to CFM). We would like to also note thatK∕M is still much smal-
ler than one so that even though we are sampling less, we may still
end up with a much better MSE than in RS.

To summarize, CFM is effective when: (i) the most informative
parts of the sample are brighter than its mean value and (ii) the
sample is highly compressible. Notice that while these two re-
quirements are sample dependent, the second gives some flexibil-
ity because one can select a representation in which a class of
signals has an optimally sparse representation.

Impact of the Sample Thickness.One important issue in CFM has to
do with the patterned illumination of thick fluorescent samples.
Indeed, with a wide-field linear excitation, the illumination pro-
pagates throughout the sample and causes the entire volume to
fluoresce. Because the optical transfer function of a circular aper-
ture (such as a microscope lens) has a bandwidth that decreases
with defocusing (1), the contrast of the pattern diminishes away
from the focal plane. As a result, the fluorescence coming from
out-of-focus planes is not modulated as a function of the patterns.
In fact, this property serves as basis for optical sectioning in struc-
tured illumination microscopy (26). In the case of CFM, the
off-focus signal contributes to an offset signal on the detector,
which, as explained above, tends to significantly degrade the qual-
ity of the reconstruction. A few strategies can be considered
to add sectioning capabilities to CS based imaging systems
(14, 27, 28). One recently demonstrated approach is based on the
rejection of the off-focus signal, in a way similar to that of a pro-
grammable array microscope (14). Another method is to avoid
generating any off-focus signal at all. We demonstrated this meth-
od for photoactivation using an evanescent-wave (Fig. 3) and
this can be extended to 2D activation within the sample volume
with two-photon temporal focusing activation (29) or light sheet
illumination (30). In the long term, an even better strategy is to
illuminate with an incoherent basis of 3D patterns and, subse-
quently, to directly reconstruct the sample in 3D.

Conclusions and Prospect
This paper presented the principles and implementation of
compressive sensing in fluorescence microscopy together with its
applications in biomedical imaging. Our approach, which is based
on a patterned excitation of the sample combined with a point-
detection of the emitted fluorescence, readily allows for substan-
tial undersampling gains when compared to traditional raster-
scanning approaches. Given the rapidly diminishing price of
DMDs, CFM also constitutes a low-cost alternative to conven-
tional wide-field imaging techniques based on onerous cameras.
CS microscopy could also be useful in situations, such as a diffus-
ing media, where direct imaging on a multipixel detector is not
possible. Furthermore, we have set forth a distinctive prospect
for hyperspectral acquisition, which has great potential for multi-
color single molecule imaging. Interestingly, other multidimen-
sional imaging modalities could be implemented in CFM. This
is in particular the case of Fluorescence Lifetime Imaging, which
holds great potential in biomedical imaging. Current wide-field
approaches suffer from a limited sensitivity and rely on expensive
custom-made equipment (34). A CFM-based approach combin-
ing a wide-field illumination, a single-point detector in the time
domain and a dedicated reconstruction algorithm could provide a
powerful alternative.

More generally, the acquisition of 3D, 4D (three spatial
dimensions and one spectral or temporal dimension) or even
higher-dimensional signals puts unrealistic constraints on system
resources. It is indeed hard to imagine that one would want to
sample such huge data cubes at rates anywhere close to the Shan-

non rate. The key is that multidimensional signals become
increasingly redundant in the sense that their information content
grows at a much lower rate than the number of voxels. For ex-
ample, movies are comparably far more compressible than still
pictures. Likewise, hyperspectral movies are far more redundant
than monochromatic movies, and so on. Expressed differently,
the ratio between the number of degrees of freedom and the
number of voxels decreases very rapidly as the dimension in-
creases. The extreme sparsity of higher-dimensional signals can-
not be ignored and we expect the advantages of CFM to become
paramount in such applications.

Appendix
This short appendix justifies our SNR calculations, and we begin
by introducing some notation. We denote by H the Hadamard
matrix and by [1] the vector with all entries equal to one. Hence,
acquiring all Hadamard patterns gives us independent Poisson
variables with means

d ¼ Sx ≔
1

2
ð11T þHÞx:

Here, we set λCS ¼ 1 as the general case can be obtained via a
simple rescaling. Hence, our estimate is of the form

x̂ ¼ S−1y;

and it is easy to verify that

S−1 ¼ 2

N

�
HT −

N
2
e1eT1

�

in which e1 ¼ ð1; 0;…; 0Þ. (Observe that the first entry is a bit
special here—a pixel at this location is always illuminated—
and that we could always shift the Hadamard matrix as to select
any special pixel.) Because Ey ¼ d ¼ Sx, we have Ex̂ ¼ x. Further,

Covðx̂Þ ¼ S−1CovðyÞS−T;

where Covðx̂Þ is the covariance matrix of the random vector x̂.
Because CovðyÞ is the diagonal matrix with entries
d ¼ ðd1; d2;…; dNÞ, we have

Varðx̂½i�Þ ¼ ∑
N

j¼1

jS−1½i; j�j2dj:

To proceed, one verifies that

N
2
jS−1½i; j�j ¼

�
N
2
− 1; ði; jÞ ¼ ð1; 1Þ;

1; ði; jÞ ≠ ð1; 1Þ;

and that∑N
j¼1 dj ¼ 1

2
ðN 2x̄þNx½1�Þ together with d1 ¼ Nx̄. Plug-

ging in gives

Varðx̂½i�Þ ¼
� ðN − 2Þx̄þ 2

N x½1�; i ¼ 1;
2x̄þ 2

N x½1�; i ≠ 1

(again this highlights the role played by the special pixel). Now
suppose that the special pixel is chosen so that there is no probe at
this location (which can always be arranged). Then we would
know that x½1� ¼ 0 (and would not bother estimating the density
at that location) and for i ≠ 1, we would have

Varðx̂½i�Þ ¼ 2x̄

as claimed.
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